Quantitation of glucose uptake in tumors by dynamic FDG-PET has less glucose bias and lower variability when adjusted for partial saturation of glucose transport

نویسندگان

  • Simon-Peter Williams
  • Judith E Flores-Mercado
  • Ruediger E Port
  • Thomas Bengtsson
چکیده

BACKGROUND A retrospective analysis of estimates of tumor glucose uptake from 1,192 dynamic 2-deoxy-2-(18F)fluoro-D-glucose-positron-emission tomography [FDG-PET] scans showed strong correlations between blood glucose and both the uptake rate constant [Ki] and the metabolic rate of glucose [MRGluc], hindering the interpretation of PET scans acquired under conditions of altered blood glucose. We sought a method to reduce this glucose bias without increasing the between-subject or test-retest variability and did this by considering that tissue glucose transport is a saturable yet unsaturated process best described as a nonlinear function of glucose levels. METHODS Patlak-Gjedde analysis was used to compute Ki from 30-min dynamic PET scans in tumor-bearing mice. MRGluc was calculated by factoring in the blood glucose level and a lumped constant equal to unity. Alternatively, we assumed that glucose consumption is saturable according to Michaelis-Menten kinetics and estimated a hypothetical maximum rate of glucose consumption [MRGlucMAX] by multiplying Ki and (KM + [glucose]), where KM is a half-saturation Michaelis constant for glucose uptake. Results were computed for 112 separate studies of 8 to 12 scans each; test-retest statistics were measured in a suitable subset of 201 mice. RESULTS A KM value of 130 mg/dL was determined from the data based on minimizing the average correlation between blood glucose and the uptake metric. Using MRGlucMAX resulted in the following benefits compared to using MRGluc: (1) the median correlation with blood glucose was practically zero, and yet (2) the test-retest coefficient of variation [COV] was reduced by 13.4%, and (3) the between-animal COVs were reduced by15.5%. In statistically equivalent terms, achieving the same reduction in between-animal COV while using the traditional MRGluc would require a 40% increase in sample size. CONCLUSIONS MRGluc appeared to overcorrect tumor FDG data for changing glucose levels. Applying partial saturation correction using MRGlucMAX offered reduced bias, reduced variability, and potentially increased statistical power. We recommend further investigation of MRGlucMAX in quantitative studies of tumor FDG uptake.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of various blood glucose levels on regional FDG uptake in the brain

Objective(s): Studies have mainly assessed the effect of hyperglycemia on18F-fluorodeoxyglucose (FDG) uptake in the brain. In this study, we assessed the FDG uptake of the brain not only in normo- and hyperglycemia but also in hypoglycemia to compare the effect of various blood glucose levels on regional FDG uptake in the brain. Methods: </...

متن کامل

18F-FDG PET/CT usefulness vs Tc99m-Tetrofosmin in the assessment of malignant brain gliomas: Report of two cases

Gliomas account for almost 80% of primary malignant brain tumors in adults. Magnetic Resonance imaging (MRI) is still the gold standard for diagnosis of brain tumors and brain 99mTc-tetrofosmin Single Photon Emission Computed Tomography (99mTc-tetrofosmin-SPECT) has been established as a useful tool for their evaluation. Fluorine-18–2-fluoro-2-deoxy-d-glucose positron emi...

متن کامل

Breast imaging with fluorine-18-FDG PET: quantitative image analysis.

UNLABELLED This study evaluated various quantitative criteria for analysis of breast imaging with PET using the radiolabeled glucose analog 18F-fluorodeoxyglucose (FDG). METHODS In a prospective study, 73 patients with abnormal mammography or palpable breast masses scheduled for biopsy were investigated with PET. A total of 97 breast tumors were evaluated by histology, including 46 benign and...

متن کامل

The power of FDG-PET to detect treatment effects is increased by glucose correction using a Michaelis constant

BACKGROUND We recently showed improved between-subject variability in our [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) experiments using a Michaelis-Menten transport model to calculate the metabolic tumor glucose uptake rate extrapolated to the hypothetical condition of glucose saturation: MRglucmax=Ki*(KM+[glc]), where Ki is the image-derived FDG uptake rate constant, ...

متن کامل

Issues pertaining to PET imaging of liver cancer

Positron emission tomography (PET) imaging using 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) has proven valuable in the diagnosis, staging and restaging for many cancers. However, its application for liver cancer has remained limited owing in part to the relatively high background uptake of the tracer in the liver plus the significant variability of the tumor specific uptake in liver cancer among pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012